

Polarization characteristics of the atmosphere : Sensitivity study and variable information

KWANG MOG LEE¹⁾, HAKLIM CHOI¹⁾, UKKYO JEONG²⁾ kyungpook national university¹⁾ university of maryland, nasa gsfc²⁾

> The 8th GEMS Science Team Meeting September 25-27, 2017

Background

- The polarization of the measured light depends on the optical system (mirror, grating, ...) and the actual incoming light (Schutgens and Stammes, 2003).
- Incorporating the polarization enables a more accurate retrieval of atmospheric properties and constituents (Mishchenko and Travis, 1997)
- Satellite groups measure the state of polarization to improve radiometric calibration.
 - **1.** *GOME* (*Burrows et al.*, 1999)
 - 2. SCIAMACHY (Bovensmann et al., 1999)
 - **3.** *GOME-2* (*Callies et al., 2000*)
- GEMS will develop a polarization correction algorithm using the RTM simulation results.

List of variables affecting the polarization

- Solar & Observation Geometry
- Surface reflectance
- Trace gases
- Aerosols
- Clouds
- etc.
- We plan to apply a real-time polarization correction using Look-Up-Table
- The table will be prepared based on the RTM simulation results

Method

Polarization Correction Algorithm(Sun and Xiong, 2007)

 $I' = hI\{1 + facos[2(\phi - \chi)]\}$

Polarization Term

I': Intensity reaching the CCD
h: Transmittance of the optical system
I: Intensity reaching the diffuser
a: Degree of polarization
φ: Angle of maximum transmission
χ: Phase angle of polarization w.r.t. instrument reference plane
f: Linear polarization sensitivity

Polarization : Trace Gases

Simulation is done for a molecular atmosphere using VLIDORT

- Residual of DoLP = DoLP (molec atm) DoLP(molec atm w/o X species)
- **DoLP** = $\frac{\sqrt{Q^2 + U^2}}{I}$
- Trace gas influence
 - $O_{3} >> O_{2} O_{2} > NO_{2}, SO_{2}, HCHO$
- Changes in the amount of ozone should be considered

Sensitivity : Ozone profile

- Ozone profile changes with latitude (especially, 10~20 km) and with season.
- DoLP depends on the ozone amount (and peak height).
- DoLP change is the largest around 308 nm.

PH -22

Sensitivity : Surface Reflectance

Molecular Atmosphere

• DoLP at 440 nm for various albedo (plot on SZA vs RAA)

- Relatively large DoLP occurs for SZA=90, RAA=90 when albedo is small

Sensitivity : Observation Geometry

Summer solstice for Seoul, 12 LST

DoLP at 440 nm as a function of SZA (plot on VZA vs RAA), with albedo=0.1
 DoLP tends to increase with VZA at small SZA, and large DoLP occurs for VZA=90 at large SZA.

DoLP at 440 nm for various RAA (plot on SZA vs VZA), with albedo=0.1
 When RAA is small, large DoLP occurs

Phase Function of Aerosols

Mixed aerosols (OPAC) and Dust aerosols

OPAC: CA(Continental Average), CC(Continental Clean), MP(Maritime Polluted) for RH=50%
 Dust: Asian Dust – knud, Saharan Dust – mitr(OPAC), dlike(dust-like)
 10

Polarization : Aerosol Type

AOD : 1.0 Albedo : 0.1

Polarization : AOD(Mineral Dust)

- DoLP changes with AOD
- DoLP changes for Adust and Saharan (MitR) dusts are different

Conclusion and Future Plan

- Polarization effects were simulated using RTM for GEMS polarization correction.
- Polarization is affected by observation geometry, trace gases, surface reflectivity and etc.
- The polarization due to the aerosol is different depending on the optical characteristics. On the other hands, it is less affected at shorter wavelengths.
- Additional analysis of aerosol and cloud polarization effects will be done.
- A polarization correction will be applied to improve accuracy of GEMS raw data.

Thank you ~

GEMS 측정 에너지 모의

Time(hour)	Spring Equinox		Summer Solstice		Autumn Equinox		Winter Solstice	
	μ _o †	φ <mark>₀‡</mark>	μ	φ _o	μ	φ _o	μ	φ₀
06	91.18	88.83	76.20	70.82	88.16	91.06	103.68	109.21
07	79.46	98.05	64.76	78.89	76.60	100.40	92.68	117.69
08	67.92	108.00	52.99	87.20	65.19	110.70	82.65	127.12
09	57.05	119.68	41.12	96.76	54.61	123.01	73.95	137.95
10	47.53	134.39	29.57	109.80	45.62	138.73	67.01	150.54
11	40.49	153.55	19.33	132.57	39.45	159.06	62.50	164.91
12	37.43	177.02	14.13	178.45	37.60	183.07	60.98	180.43
13	39.30	201.11	18.85	225.62	40.67	206.44	62.67	195.92
14	45.50	221.47	28.95	249.30	47.71	225.54	67.33	210.20
15	54.52	237.18	40.48	262.64	57.21	240.23	74.39	222.70
16	65.12	249.48	52.34	272.32	68.07	251.90	83.17	233.44
17	76.54	259.77	64.12	280.66	79.61	261.85	93.29	242.79
18	88.10	269.11	75.58	288.73	91.35	271.07	104.30	251.25

† Solar Zenith Angle
‡ Solar Azimuth Angle

Aerosol types	Components	N _i (cm ⁻³)	<i>M_i</i> (µg m⁻³)	Number mixing ratios (n)	Mass mixing ratios (m _j)
Continental clean	total water soluble insoluble	2600 2600 0.15	8.8 5.2 3.6	1.0 0.577E-4	0.591 0.409
Continental average	total water soluble insoluble soot	15 300 7000 0.4 8300	24.0 14.0 9.5 0.5	0.458 0.261E–4 0.542	0.583 0.396 0.021
Continental polluted	total water soluble insoluble soot	50 000 15 700 0.6 34 300	47.7 31.4 14.2 2.1	0.314 0.12E-4 0.686	0.658 0.298 0.044
Urban	total water soluble insoluble soot	158 000 28 000 1.5 130 000	99.4 56.0 35.6 7.8	0.177 0.949e–05 0.823	0.563 0.358 0.079
Desert	total water soluble mineral (nuc.) mineral (acc.) mineral (coa.)	2300 2000 269.5 30.5 0.142	225.8 4.0 7.5 168.7 45.6	0.87 0.117 0.133E–1 0.617–4	0.018 0.033 0.747 0.202
Maritime clean	total water soluble sea salt (acc.) sea salt (coa.)	1520 1500 20 3.2E–3	42.5 3.0 38.6 0.9	0.987 0.132E–1 0.211E–5	0.071 0.908 0.021
Maritime polluted	total water soluble sea salt (acc.) sea salt (coa.) soot	9000 3800 20 3.2E-3 5180	47.4 7.6 38.6 0.9 0.3	0.422 0.222E-2 0.356E-6 0.576	0.160 0.814 0.019 0.006